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We address an apparent conflict between the traditional canonical quantization framework of
quantum theory and spatially restricted quantum dynamics when the translation invariance of an
otherwise free quantum system is broken by boundary conditions. By considering the example of a
particle in an infinite well, we analyze spectral problems for related confined and global observables.
In particular, we show how we can interpret various operators related to trapped particles by not
ignoring the rest of the real line that is never occupied by a particle. ©2004 American Association of

Physics Teachers.
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I. INTRODUCTION

A proliferation of papers on the pedagogical and mo
formal aspects of the most idealized trapping model, the
finite potential well,1–8 sophisticated exercises in exact qua
tization on a half-line,9 and the quantum mechanical a
proach to particles on surfaces with obstacles,10 motivates
renewed interest in reconciling the principles of canoni
quantization with the analysis of well-posed, spectral pr
lems for the Hamilton operator with Dirichlet boundary co
ditions.

The purely spectroscopic analysis is represented in
literature on mesoscopic systems such as quan
billiards or microwave cavities.11–13 In this analysis one
avoids using canonical quantization and instead focuse
the statistical properties of the related Laplace operator
genvalues. Issues such as the position and momentum
servables and the indeterminacy relations are omitted f
the analysis of these spatially trapped quantum systems

A major surprise in this context is that a careful analy
of the conceptual background reveals unexpected
consistencies and paradoxes.5–8 They appear when one ap
plies the traditional apparatus of canonical quantization
models of trapping and arise from attempts to give a cor
meaning to the differential expression2 i\d/dx. It is pos-
sible to define different self-adjoint operators by means
the same differential expression that leads to conflicting
tions ~compare Refs. 5, 7, 8 and Refs. 3, 14, 15! for what
should be the momentum observable and consequently
momentum representation of wave functions for a particle
the infinite well.

The textbook canonical quantization procedure for a p
ticle in one spatial dimension is carried out in the Hilbe
spaceL2(R) of square integrable functions on the real li
R. The canonical position and momentum operators (X f )
3(x)5x f(x), (Pg)(x)52 i\ (d/dx) g(x) are defined to ac
on appropriate sets of functionsf ,gPL2(R). If the motion of
the particle remains confined to a segment@a,b#,R, then
the corresponding wave functions are supported by@a,b#
and thus form a subspace ofL2(R). This subspace may b
identified with L2(@a,b#), the Hilbert space of square inte
grable functions on@a,b#.

Therefore, for spatially confined dynamics, it appe
natural to neglect the~irrelevant! complementR\(a,b) of the
segment@a,b# and to adopt the quantization in the interv
strategy.5,7,8 One still employs the operator2 i\d/dx, but its
924 Am. J. Phys.72 ~7!, July 2004 http://aapt.org/ajp
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domain is required to belong toL2(@a,b#); a andb are the
boundary points of the well. Then, the resulting ‘‘momentu
observable’’ has a discrete spectrum and the momen
space formulation is given in terms of a Fourier series.5

Although we arrive at the one-parameter family
momentum-like operators, the problem is that none of th
is compatible with the infinite well~Dirichlet! boundary con-
ditions. There is no self-adjoint operator acting as2 i\d/dx
in the subspace of wave functions inL2(@a,b#) which vanish
at the end points of the interval.

On the other hand, we should notice that the canon
operatorsX and P are defined inL2(R) without any refer-
ence to the dynamics. Therefore, as a matter of princi
they retain their physical meaning for any conceivable m
tion of a particle, including the permanent trapping con
tions. Implicitly, this viewpoint is represented in Refs. 14,
15, and 16, where2 i\d/dx is interpreted inL2(R) and is
not confined to the interval@a,b#,R. Therefore the exterior
of the infinite well does matter. The traditional momentum
space formulation for wave packets, introduced by the F
rier transform

f~p,t !5
1

A2p\
E

2`

1`

expS 2
ipx

\ Dc~x,t !dx, ~1!

has been exploited in the analysis of the infinite well a
half-line versions of the wave packet dynamics.3,14,15 The
notion of a standard momentum observable with a conti
ous spectrum also is present in the derivation of so-ca
entropic uncertainty relations for the infinite well.16

The problem is that the differential expressio
2 (\2/2m)(d2/dx2), whose domain contains only function
f PL2(R) such thatf (x)50 if x<a andx>b, is not a self-
adjoint operator inL2(R). Hence, the infinite well energy
observable definition is defective, if naively extended
L2(R) to conform with the presumed domain properties ofX
andP.

The above mathematical inconsistencies are normally
nored in the physics-oriented literature and the primitive~in-
finite well! example of the quantum mechanical energy sp
trum is not at all analyzed in terms of the full-fledge
canonical quantization formalism. Interestingly, there is a
no agreement among mathematically oriented physic
whether one can introduce a physically justified candid
924© 2004 American Association of Physics Teachers
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for the momentum operator in the infinite well or the ha
line settings. The folklore statement reads: there isno mo-
mentum observable.5

For the above reasons we reconsider the problem of
quantum dynamics of a particle that is restricted to a segm
of a line by means of impenetrable barriers. Quantum
namics with barriers involves a number of mathemati
subtleties: it is necessary to keep in mind the distinct
between symmetric~Hermitian! and self-adjoint operators. A
discussion of self-adjoint extensions of symmetric operat
with a focus on the teaching of quantum mechanics, can
found in Ref. 5. Our goal is to resolve the apparent mom
tum observable paradoxes5,7 that prohibit a consistent use o
canonical quantization procedures in the analysis of quan
systems with trapping boundary conditions.

We resolve the paradox by acknowledging the existenc
the rest of the real line, in conformity with the Fourier tran
form definition of Eq.~1!, even if we know that the trappe
particle will never occupy that space. The major localizat
mechanism is rooted in the dynamics of the particle which
generated by a properly defined Hamiltonian.

We give physical motivations for the validity of the sta
dard momentum observable notion for the trapped part
by investigating the infinite well as the limit of a series
finite wells. The idealization of an infinite well is give
physical meaning by assuming that it approximately
scribes more realistic finite well models. To this end we ne
to maintain consistent interpretations of the concepts of
sition, momentum, and energy operators in the course of
limiting procedure. This consistency can be achieved if
consider the infinite well eigenfunctions as the functions
L2(R), that is, defined on the whole ofR, but supported only
by @a,b#PR. We discuss the related energy observable is
in Secs. III, IV, and V B. We employ the usual notions
position and momentum onR and no recourse to
momentum-like operators with a discrete spectrum
necessary.5,7

The structure of the paper is as follows. In Sec. II w
outline the paradoxes that have been found to hamper a
sistent discussion of quantum systems with rigid walls.
Sec. III we describe the outcome of a rigorous quantizat
of particle motion in a finite interval on the lineR. In Sec. IV
we analyze an infinite well as a limit of a finite one an
discuss the groundwork for Sec. V where we propose to re
the assumptions of Sec. III~quantum mechanics in a tra
only! by considering the trap exterior as a necessary elem
of the theory. In view of the existence of the standard notio
of the position and momentum observables inL2(R), the
canonical quantization procedure in the presence of imp
etrable barriers is justified and removes the conceptual
stacles discussed in Sec. II.

II. QUANTUM SYSTEMS WITH BARRIERS:
MATHEMATICS VERSUS PHYSICS

Although it is generally accepted that physics is written
the language of mathematics, there are disagreement
how much mathematical background is needed to giv
proper description of physical phenomena.

The foundations of quantum mechanics employ both
precision of modern mathematical language and intuit
based on the analysis of physical phenomena. The m
developments in quantum theory and its ability to succe
fully describe the microworld are due more to physical in
925 Am. J. Phys., Vol. 72, No. 7, July 2004
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ition than to the precision of mathematics. This succes
one reason why many physicists neglect sophisticated m
ematical arguments.

Although we can regard the correspondence between
servables and self-adjoint operators in Hilbert space as g
erally accepted, the precise formulation of the operator
mains often is considered an unnecessary nuisance
mathematical pedantry. However, we argue that the dom
subtleties in the operator analysis carry crucial physical
formation and must not be disregarded.

The infinite well is a special case of the class of quant
billiards, which are models of a quantum particle that is p
manently trapped in a bounded region of arbitrary sha
Their energy spectra can be established only for relativ
simple planar (R2) confinement regions and suffer from th
same momentum observable ‘‘paradoxes’’ as the infinite w
model. Investigations of the eigenvalue problem for the L
placian on a connected and compact domain of arbitr
shape inR2 with Dirichlet boundary conditions have a lon
history. In its full generality it is one of the most difficul
problems in mathematics,17 but suitably simplified it is a
playground for the study of mesoscopic systems, quan
dots, and other nanostructures.

For a wide class of Hamiltonians, such as those w
bounded potentials, one observes dispersion of wave pac
Thus, even if the particle is initially confined within a certa
interval on R, there is a nonvanishing probability curre
through the interval boundaries.

We are interested in the situation when the quantum
namics is so restrictive that a particle once localized can
be found on certain parts of the real line at any time. T
situation amounts to saying that there is no tunneling,18,19 or
any other form of quantum mechanical transport betwe
those parts and their complement onR. Simple examples of
such circumstances are provided by introducing imp
etrable walls. These walls can be interpreted as ideal trap
enclosures onR. Typical barriers are externally impose
through suitable, often discontinuous and more singular,
tentials. Less spectacular but important examples of imp
etrability are related to the existence of nodes, nodal cur
or surfaces of the generalized ground state function~see
Refs. 18 and 19!.

The notion of impenetrability does not directly follow
from the canonical quantization procedure. A typical quan
zation recipe first presumes that there should be primi
kinematic observables related to the position and mom
tum, for example, the self-adjoint position and momentu
operators. It is the~secondary! dynamical observable, the
Hamiltonian of the system, that determines the evolution
the system. Thenc(x,t) ultimately appears as a solution o
the partial differential equation with suitable initial/bounda
conditions. Hence, localization essentially arises due to
dynamics with confining boundary conditions.

Observables are represented by self-adjoint opera
which may be bounded or unbounded. Obviously, the g
erator of unitary dynamics, the Hamiltonian, has to be amo
them. The self-adjointness property is required because
the spectral theorem which, as a general solution of the
genvalue problem for a given operator, determines a uni
link between an operator and its family of spectral proje
tions. The projection operators in turn let us state unambi
ous elementary~yes–no! questions about the properties of
physical system. For example, by using projection opera
925P. Garbaczewski and W. Karwowski
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we may ask for the probability of locating a particle in
given interval or to find its momentum within a certa
range.

However, in connection with the notion of an unbound
observable, there are associated very rigid domain res
tions. We shall address this point in some detail in Sec.
An immediate problem can be seen if we consider a part
on R and assume that it permanently resides between
impenetrable barriers~rigid walls!, placed at pointsa andb
in R. Clearly, the conditionc(x,t)50 for all x<a and x
>b is enforced on the wave function of a particle.

One may think that a Hamiltonian can be simply defin
as the differential operator2 (\2/2m)(d2/dx2), both inside
and outside the impenetrable walls. The point is that such
apparently natural, globally defined Hamiltonian is not
self-adjoint operator. It is not even a symmetric operato20

Hence, a consistent definition of the quantum dynamics
the presence of a barrier needs a careful examination of
adjoint operator candidates for the Hamiltonian of the qu
tum system.

Another obvious conflict with intuition appears when o
tries to interpret the differential expression2 i\d/dx as a
momentum operator in the barrier context. The continu
spectrum of the momentum operator for a free quantum
ticle on a line is well-known. The notion of momentum is n
so obvious for the infinite well model in view of the textboo
wisdom: ‘‘... momentum operator eigenfunctions do not ex
in a box with rigid walls, because then they would vani
everywhere.’’21 In contrast, another well known textbook14

does not prohibit such notions as the momentum meas
ment and the distribution of continuous momentum value
stationary states, these being interpreted asL2(R) wave
packets. A quantum particle in an infinite well gives rise to
pictorial illustration of the wave packet dynamics.14,15

An attentive reader must be confused, because both
cussions seem to be justified,14,21 although the discrepancie
between the two points of view were not explained or
solved in a single text. In Refs. 14, 3, and 15, an expl
answer was formulated for the probability of a measurem
of the momentumP of the particle yielding a result betwee
p and p1dp for a particle confined in an infinite well. Al
calculations explicitly involve theL2(R) Fourier integral Eq.
~1! for spatially confined wave packets, thus suggesting
the infinite well problem may not be in conflict with th
standard notion of the momentum operator@understood as
the generator of spatial translations inL2(R)]. Such an op-
erator has a continuous spectrum.

The same infinite well problem has been summarized
Ref. 7 as follows: the spectrum of the operatorP is discrete,
hence the Hilbert space in the momentum representation
comes the Hilbert spacel 2 of square summable sequence
see for example, Sec. III. Then, Eq.~1! is interpreted as a
mathematically equivalent version of the infinite well wa
function c(x,t), but not as its momentum representation.

In Refs. 14, 3, and 15, the differential expressi
2 i\d/dx is interpreted inL2(R), hence the exterior of the
infinite well does matter. In Ref. 7, the same different
expression is localized to the interior of the well by deman
ing that its domain belongs toL2(@a,b#), with a andb the
well boundaries, so the rest of the line is irrelevant.

Analogous conflicting interpretations can be seen in
discussion of a single impenetrable barrier that dividesR into
926 Am. J. Phys., Vol. 72, No. 7, July 2004
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two non-communicating segments, see for example, Ref
and 15. A quantum particle, once initially localized on t
half-line, either positive or negative, would reside on t
half-line indefinitely, with no chance to change the localiz
tion area. Again, the usual momentum representation3,14,15

makes sense in the analysis of the dynamical behavio
wave packets. However, it is well known22 that a symmetric
operator2 i\ (d/dx), as defined onC0

`(R6) ~the space of
the infinitely differentiable functions of compact support
the positiveR1 or negativeR2 half-lines ofR), has no self-
adjoint extensions inL2(R1) or L2(R2). In other words
there is no self-adjoint momentum operator of the fo
2 i\ (d/dx) for a particle on a half-line. Accordingly, the
authors of Ref. 5 conclude that ‘‘... the momentum is no
measurable quantity in that situation.’’

To summarize, the standard Fourier integral analysis
the real line, Eq.~1!, has been applied to wave packets o
particle confined to a segment ofR or to the half-line and
interpreted as a consistent spectral analysis of the momen
operator.3,14,15 According to Refs. 5 and 7, the previou
analysis can be seen only as an admissible computati
device having nothing to do with the momentum opera
and the true physically relevant state of affairs for a parti
confined to the segment is said to refer to the spectral an
sis of the momentum operator in terms of Fourier series.
a particle confined to the half-line, the notion of momentu
is said not to be defined.

III. QUANTIZATION IN THE FINITE INTERVAL

We now discuss the mathematical issues of the quant
tion on the interval~a particle confined to a segment ofR).
We begin with some observations concerning a free part
on the real lineR.

In one-dimensional models on the real line, the mom
tum operatorP and the free HamiltonianH are self-adjoint
operators defined by2 i\d/dx and (2\2/2m)d2/dx2, re-
spectively. However, these standard differential expressio
when defined on the spaceC0

`(R) of infinitely differentiable
functions of compact support, are not self-adjoint but on
symmetric operators. In the following, all coefficients su
as\ and\2/2m will be set equal to unity for convenience.

BecauseC0
`(R) is invariant under differentiation, the sym

metric operator2 d2/dx2 can be interpreted as the square
another symmetric operator2 i (d/dx), in the sense that it
means two consecutive actions. To obtain the self-adjo
operators from the symmetric ones, we must expand t
domains. There area priori two possibilities:

~i! We can extend the symmetric operator2 i (d/dx) by
taking its closure to a self-adjoint operatorP, which
is then called a momentum operator, and define
free particle Hamiltonian operatorH f5P2.

~ii ! We can extend the symmetric operator2 d2/dx2 by

taking its closure to a self-adjoint operatorH̃ f , which
may be called the Hamiltonian operator.

These two procedures give the same result:H f5P25H̃ f if
considered inL2(R).

The situation is different when we pass toL2(@a,b#), be-
cause now the mathematical subtleties unavoidably ente
turns out that there is not one, but a family of infinitely ma
926P. Garbaczewski and W. Karwowski
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self-adjoint operators inL2(@a,b#) whose action on func-
tions from the domain is defined by the same express
2 i (d/dx). In the following, we shall simplify the notation
by choosing a50, b5p and hence the Hilbert spac
L2(@0,p#).

The differential expressions2 i (d/dx) and 2 (d2/dx2)
when acting inC0

`(0,p) @infinitely differentiable functions
with support included in the open interval (0,p),R] define
symmetric operators inL2(@0,p#). Obviously, C0

`(0,p) is
invariant under differentiation and thus2 d2/dx2 is the
square of2 i (d/dx) in the sense of two consecutive action
However, now the procedures~i! and ~ii ! require some care
In what follows we shall refer to the Krein–von Neuman
theory of self-adjoint extensions, see, for example, Refs
and 23, and the Appendix.

Let us begin with procedure~i!. We denote A

52 i (d/dx) on C0
`(0,p). Then its closureĀ52 i (d/dx) is

defined as the differential expression2 i (d/dx) acting on an

expanded domainD(Ā)5$ f PAC@0,p#; f (0)505 f (p)%.
The notation AC refers to the absolute continuity off which
gives meaning to the first derivativef 8. The boundary con-
ditions emerge in the process of taking the closure.

The operatorĀ is a closed symmetric operator, but is n

self-adjoint. To find the self-adjoint extension ofĀ, we need
to establish its deficiency indices.5,22,23 In the Appendix we
show them to be~1,1!, which implies thatĀ has a one pa-
rameter family of self-adjoint extensions inL2(@0,p#). We
denote the extensions byPa :

Pa52 i
d

dx
,

D~Pa!5$ f PAC@0,p#; f ~0!

5exp~ ia! f ~p!% ~0<a,2p!. ~2!

Note that there are no other self-adjoint extensions ofĀ,
and thus no other self-adjoint operators acting as2 i (d/dx).
For eacha, there is inL2(@0,p#) an orthonormal basis that i
composed of the eigenvectors ofPa ,

en
a~x!5

1

Ap
expi S 2n1

a

p D x, ~3!

wheren takes integer values, and the eigenvalues ofPa are

pn
a52n1

a

p
. ~4!

Let us introduce another definition forD(Pa). If f
PL2(@0,p#) is expressed in terms ofen

a so that f (x)
5(n f n

aen
a(x), then f PD(Pa) if and only if (n n2u f n

au2

,`. This supplementary characterization of the domain w
prove useful to define functions of the operatorsPa , cf. the
spectral theorem description in the Appendix.

The operatorHa defined by

Ha5~Pa!2, ~5!

has the same family of eigenvectors asPa , but its eigenval-
ues are
927 Am. J. Phys., Vol. 72, No. 7, July 2004
n

.

5

ll

En
a5~pn

a!25S 2n1
a

p D 2

~6!

for all integersn. As a consequence,

D~Ha!5H f 5(
n

f n
aen

a ;(
n

n4u f n
au2,`J . ~7!

Thus D(Ha),D(Pa) and D(Pa)5PaD(Ha). It also fol-
lows that

Ha52
d2

dx2 , D~Ha!5$ f PAC2@0,p#,

f ~0!5exp~ ia! f ~p!, f 8~0!5exp~ ia! f 8~p!%, ~8!

where the AC2 notation gives meaning to the second deriv
tive of f . Therefore the operatorHa in Eq. ~8! can be safely
interpreted as two consecutive actions ofPa , Eqs. ~2! and
~5!, where both operators are self-adjoint.

Now let us consider~ii !. The closure of2 d2/dx2 as de-

fined onC0
`(0,p) is H̄52 d2/dx2 with the domainD(H̄)

5$ f PAC2@0,p#; f (0)5 f (p)5 f 8(0)5 f 8(p)50%. The

closed symmetric operatorH̄ has the deficiency indices~2,2!.

Therefore the family of all self-adjoint extensions ofH̄ is in
one-to-one correspondence withU(2), the family of all 2
32 unitary matrices, see for example, Refs. 5 and 23.

We can devise a family ofUaPU(2), 0<a,2p, whose
choice is equivalent to the boundary conditionsf (0)
5exp(ia)f(p), f 8(0)5exp(ia)f8(p), and thus definesHUa

5Ha , Eq. ~5!, with the domainD(Ha), Eq. ~8!. Conse-
quently, the two procedures~i! and~ii ! are equivalent for all
operator pairsHa , Pa with 0<a,2p.

The family Ua is a proper subset ofU(2) and thus there
are HU for which ~i! does not work. For example, for
suitable choice of a unitary matrixU,5 the corresponding
self-adjoint operatorHU8Hw is the infinite well Hamil-
tonian:

~Hwf !~x!52
d2

dx2 f ~x!,

D~Hw!5$ f PAC2@0,p#; f ~0!5 f ~p!50%. ~9!

In the infinite well context provided by Eq.~9!, we are not
allowed to interpretHw as the square of any self-adjoin
2 i (d/dx) 5Pa . The reason is that noPa respects the Di-
richlet boundary condition, which makes it impossible
identify the HamiltonianHw in L2(@0,p#) as Pa

2 . Conse-
quently, the quantization in a finite interval gives rise to t
following.

~i! The one-parameter family of HamiltoniansHa of Eq.
~8! with the momentum operatorsPa of Eq. ~5!,
whose eigenvalues form discrete spectra.

~ii ! The HamiltonianHw of Eq. ~9!, suitable for the infi-
nite well problem, but then with no notion of a mo
mentum observable.

To complete the quantization scheme on the interval,
need to introduce the position operatorQ defined as (Q f )
3(x)5x f(x). In the present case it is a bounded opera
contrary to what is normally expected from a member o
canonically conjugate position-momentum pair.
927P. Garbaczewski and W. Karwowski
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The canonical commutation relationsQPa2PaQ5 i I for-
mally hold on all f PAC(a,b); f (a)5 f (b)50, but cannot
be given in Weyl form~that is, in terms of suitable unitar
operators!, which is indispensable for the mathematical co
sistency of the canonical formalism. Note that by followin
procedure~i!, which yields Eq.~5!, we have lost a direct link
to the infinite well problem.

For the special case ofa50, we end up with a degenera
spectrumEn5(2n)2. This spectrum corresponds to the f
miliar plane rotator. ForaÞ0, we can relate the spectra
problem Eq.~6! to the rotation of a charged particle aroun
an infinitely thin solenoid;24 the parametera is related to the
magnetic flux. Hence,Ha , Pa refer exclusively to rotationa
~angular dynamics! features of motion. Neitherd2/dx2 with
the Dirichlet boundary condition, nor any otherHU ~pro-
vided UÞUa) fit the above canonical quantization pictur
we recall that no self-adjoint momentum operator of the fo
2 i (d/dx) is compatible with the Dirichlet boundary cond
tions.

In connection with Eq.~6!, the textbook solution of the
infinite well yields the familiar spectral formulaEn5n2,
wheren>1 is a natural number. This result is incompatib
with En

a5(2n1 a/p)2, Eq.~6!, wheren is an integer. More-
over, the related eigenfunctionsen

a(x) do not respect the Di-
richlet boundary conditions in contrast to the ‘‘true’’ infinit
well Hamiltonian eigenfunctionscn(x)5A@2/p# sinnx. A
possible physical interpretation ofHU that falls neither in
class~8! nor ~9! is discussed in Ref. 5.

We stress that the interpretation ofPa in Eq. ~2! as a
momentum operator for a trapped particle~as advocated in
Refs. 5–7! stems from the fact that its differential expressi
reads2 i (d/dx), just as it does for a particle on the real lin
Some obvious consequences of this implicitL2(R) input in
the isolated trap,L2(@a,b#), include:~1! the non-uniquenes
of the momentum operator,~2! the non-existence of the mo
mentum operator on the half-line, and~3! a conceptual dis-
continuity in the interpretation of the momentum observa
betweenL2(R) and L2(@a,b#) L2(@a,`#).5 The latter con-
ceptual discontinuity relates to the limiting procedures wh
passing from regular~such as the finite well with its uniqu
momentum observable! to singular problems~such as the
infinite well, or half-line cases, with non-unique or no m
mentum observable!.

IV. THE INFINITE WELL AS THE LIMIT OF THE
FINITE ONES

It is common for physicists to replace a complicat
physical system by a simpler solvable model and then ob
approximate answers to the originally posed questions. O
the solvable models are more singular than the realistic o
In quantum mechanics textbooks, the piecewise constan
tentials that form sharp barriers, steps, or wells are implic
interpreted as idealized versions of continuous potential
similar shapes. A more singular example is the Dirac de
potential which often is used instead of a very narrow a
very deep potential well.18,25

Infinite well ~or infinite barrier! models make sense if the
are capable of giving approximate answers to questions
cerning finite wells. It is important that the validity of th
approximation be controlled, which requires the notion
continuity when passing from the finite well to the infini
928 Am. J. Phys., Vol. 72, No. 7, July 2004
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one. In this section, we are motivated by the considerati
of Ref. 5 where the previously mentioned conceptual disc
tinuity between the finite well and infinite well models
clearly emphasized.

It is natural to consider the half-line case as the limit of t
step potential. Again we encounter problems with the idea
the momentum observable: for any finite height of the s
potential, there exists a momentum observable@a unique
self-adjoint operator acting as the differential express
2 i\ (d/dx)], while for an infinite height there is no self
adjoint extension corresponding to2 i\ (d/dx). The conclu-
sion of Ref. 5~see Sec. 7.4!, that ‘‘an infinite potential can-
not be simply described by the limit of a finite one
contributes to the paradoxes and inconsistencies we
cussed in Sec. II.

If one tries to model a particle that is localized on a se
ment of a line, the confinement is enforced by consider
Hamiltonians with vanishing boundary conditions at the en
of the interval. This boundary condition can be imposed
ther by the singularity of the potential~such as the Po¨schl–
Teller potential in Ref. 7! or ‘‘by hand’’ as for the infinite
well.5,7 The latter case is justified by introducing the vag
concept of a finite potential within the spatial segment a
plus infinity otherwise.

The reasoning goes as follows. A particle that is trapp
inside the infinite well 0<x<p must have its wave function
equal to zero outside the well. To ensure this condition,
consider the potentialV(x)5` on the complement of the
open interval~0,p! in R, while V(x)50 between the impen
etrable barriers.

Note that the corresponding stationary Schro¨dinger equa-
tion,

@2¹21V~x!#c~x!5Ec~x!, ~10!

with xPR has no meaning beyond the chosen interval.
By formally setting`3050 in the ‘‘improper’’ area, one

argues that in view of Eq.~10!, the wave functionc(x) must
vanish forx<0 andx>p. Then, one concludes that instea
of demanding unusual properties ofV(x), it is more natural
to impose restrictions on the wave functions demanding
cPL2(@0,p#); c(0)5c(p)50 ~the dynamics is spatially
restricted to@0,p#!. In other words, the rest of the line can b
neglected.

Now, let us consider a~dis!continuity in passing to the
infinite well from a finite well. We have mentioned that th
infinite well problem acquires a physical meaning as an
proximation~by suitable limiting procedures! of a finite well
model. Let us consider5 V(x)50 for xP(0,p) and V(x)
5V0.0 for x¹(0,p). As V0→`, the number of eigenvec
tors for the finite well problem2¹21V also goes to infinity.
Let us label bynPN the eigenvaluesEn

V in increasing order
and the corresponding eigenfunctions byfn

V :

~2¹21V!fn
V5En

Vfn
V . ~11!

For fixedn we obtain for large values ofV0 ~compare for
example, Ref. 5!:

En
V.En

`S 12
4

pAV0
D , ~12!

whereEn
`5n2 is the infinite well energy eigenvalue withn

51,2,... . We also have
928P. Garbaczewski and W. Karwowski
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fn
V~x<0!.A2

pS n

AV0
D exp$2uxuAV0%, ~13a!

fn
V~0<x<p!

.A2

p Fsinnx1S 1

pAV0
D @~np!cosnx2sinnx#G ,

~13b!

fn
V~x>p!.6A2

pS n

AV0
D exp@2~x2p!AV0#. ~13c!

Accordingly, whenV0→`, thenEn
V→En

` , and

fn
V~x!→fn

`~x!5A2

p
sinnx ~14!

for 0<x<p and zero otherwise. The infinite well Hami
tonian eigenvalues and eigenfunctions are thus smoothly
produced and we keep under control the accuracy of
approximation of the finite well by its infinite well idealiza
tion.

We need to achieve more than the convergence prope
~12! and~14!. Namely, we are interested in verifying wheth
the finite well notions of position, momentum, and ener
observables go through the limiting procedure.~We recall the
no-go claim of Ref. 5.!

Note that the limitfn
V→fn8

` asV0→` holds in the norm
of L2(R). It follows that for any interval (x1 ,x2), we have,
using an obvious notation, the following behavior of the
calization probabilities: PxP(x1 ,x2)

V 8*x1

x2ufn
V(x)u2dx→*x1

x2

3ufn
`(x)u2dx5PxP(x1 ,x2)

` as V0→`. So, we have secure

the standard meaning of the position measurement for b
the finite and infinite well problems.

These limiting behaviors are paralleled by the conv
gence of the suitable Fourier transforms. Indeed, it is w
known that the Fourier transform, as defined inC0

`(R), can
be extended to a unitary operator inL2(R). Therefore, the
Fourier transform offn

V also converges in theL2(R) norm to
the Fourier transformFfn

` of fn
` . Hence, for any (p1 ,p2),

we have thatPpP(p1 ,p2)
V 8*p1

p2uFfn
V(p)u2dp→*p1

p2uFfn
`(p)u2

3dp5PpP(p1 ,p2)
` as V0→`. Thus, we conclude that if the

infinite well problem eigenfunctions are considered as
functions defined onR but supported by@0,p#, then we can
employ the usual notions of position and momentum onR
and these notions are common for the finite and the infi
well. The conceptual continuity in the notions of positio
momentum, and energy measurements survives the lim
procedureV0→`.

We emphasize that forL2(0,p), we have two non-
equivalent ways of making the Fourier analysis. IfL2(0,p)
is considered as a subspace ofL2(R), then
FL2(0,p),L2(R). More precisely, if 0Þ f PL2(0,p), then
Ff PL2(R), butFf does not belong toL2(0,p). Because the
support off is compact, the functionFf can be analytically
continued to the entire complex plane. Thus, ifFf vanishes
on R\@0,p#, it also vanishes identically onR.

If R\@0,p# is neglected andL2(0,p) is considered inde-
pendently, then we can employ the Fourier series. In
929 Am. J. Phys., Vol. 72, No. 7, July 2004
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language of Ref. 7, the Fourier series stands for the mom
tum representation formulation if the momentum operato
chosen to beP0 , as given by Eq.~2!. The Hilbert space of
this momentum representation is thenl 2(Z), the space of
square summable sequencesf n , wheren runs over the set of
integersZ. Let us note that the self-adjoint operators,P in
L2(R) andP0 in L2(0,p), both exemplify the spectral theo
rem and the notion of momentum representation, but are
damentally different operators.

In the course of all limiting operations, the notion o
L2(R) and thus of the entire real line input~notably of the
usual momentum observable! is implicit. This observation
lends support to the standard momentum representation
cept, employed in Refs. 3, 14, and 15, which can thus
adopted to the infinite well and the half-line wave pack
dynamics. Consequently, if we had followed the strategy
Refs. 7, 5, and 8 and ignored the rest of the real line,
restriction of the model toL2(@0,p#) would have ruled out
Ffn

` . As a result, the usual concept of the momentum
erator as the generator of the translation group would
longer be appropriate and the interpretation in Ref. 5 wo
make a sharp distinction between the finite well and infin
well cases. Such a distinction is untenable on phys
grounds.

V. QUANTUM DYNAMICS WITH BARRIERS

A. Trapping as a dynamical effect

Now we shall analyze the main outcome of our previo
discussion: we can make sense of various operators
trapped particles by not ignoring the rest of the real line~the
exterior of the trap!.

In the canonical quantization scheme, quantum mecha
on the entire real line refers to the correspondence princi
which introduces the positionQ and momentumP observ-
ables as unbounded operators inL2(R). The intuitive defini-
tion of multiplication and differentiation operators on smoo
functions with a reasonable fall off at infinity is sufficient t
determine uniquely the conjugate self-adjoint operators
obey the canonical commutation relations in the Weyl fo
~that is, by means of unitary operators!. This statement is
purely kinematical and thus independent of any dynamic

The free particle Hamiltonian,

H f52
d2

dx2 5P2, ~15!

implies thatP commutes withH f , and thus is a constant o
motion which supports the view thatP is the momentum
operator. For the free particle the identity~15! relates the
HamiltonianH f and P2. In other cases, there appear pote
tials or boundary conditions~such is the case for the half-lin
and infinite well problems!. Whatever the dynamics and thu
the general HamiltonianH may be, we can safely assum
that H is self-adjoint and bounded from below.

Let us consider the general mathematical mechanism
permanent confinement. LetH be a Hamiltonian operato
and we choose an open intervalG,R with xG denoting its
characteristic~indicator! function: xG(x)51 for xPG and
vanishes otherwise.~To conform with the previous notation
we suggest the identificationG8(a,b) andḠ8@a,b#.)
929P. Garbaczewski and W. Karwowski
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If f PD(H), thenxGf typically does not belong toD(H).
If, however, for a givenH and G, the propertyf PD(H)
necessarily implies thatxGf PD(H) thenxG , considered as
a projection operator inL2(R), commutes with the spectra
projectors ofH and hence with the unitary operator ex
(2iHt). This property implies an invariance of the subspa

@ f PL2(R);suppf ,Ḡ# with respect to time evolution. Thus

if at some instant of time a particle is localized inḠ, that is,

its wave function f is supported by a subset ofḠ, then

supp$g(t)5exp(2iHt)f%,Ḡ for all times t. Hence the par-

ticle has always been inḠ and will stay there forever.
Consequently, if the dynamics is defined by the Ham

tonianH in L2(R), then the confinement inḠ occurs if and
only if H can be split into a direct sumH5H1% H2 corre-

sponding to the decompositionL2(R)5L2(R\G) % L2(Ḡ),
so thatH1 is self-adjoint inL2(R\G) andH2 is self-adjoint

in L2(Ḡ). Then exp(2iH1t) and exp(2iH2t) describe the

time evolution of the system localized inR\G andḠ, respec-
tively. Moreover exp(2iHt)5exp(2iH1t)exp(2iH2t).

Thus the dynamics from the outset takes account of
impenetrable barrier at the boundary ofG. This effect is
purely dynamical, and there is no reason to modify the me
ing of kinematical variables such as the position and mom
tum ~see Sec. III!. Consequently, if a particle described b
the wave functionf (x) is localized inḠ, then necessarily

f PL2(Ḡ). However, now the momentum representati

reads f (x)→(Ff )(p)8 f̃ (p), by the Fourier integral, Eq
~1!. If G is bounded, thenFf is an entire function. So, if a
particle at some~initial! instant of time is localized in a
bounded region in space, then its momentum is spread
the whole real line.

In the following we illustrate the qualitative physical an
mathematical mechanisms leading to the above reductio
L2(R) by the dynamics.

B. Infinite well

First, we defineH52 d2/dx2 through its specific domain
D(H)5@ f PAC2(R); f , f 8, f 9PL2(R), f (0)505 f (p)#. We
recall that the AC2 notation refers to the absolute continui
of the first derivative which gives meaning to the seco
derivative ~in the sense of distributions, as a measura
function!. The operator$H,D(H)% is self-adjoint and the de

composition L2(R)5L2(R\G) % L2(Ḡ), together with H

5H1% H2 , holds forḠ5@0,p#. Thus the traditional infinite
well problem is nothing else than the analysis ofH2 in the
spaceL2(@0,p#), with the Dirichlet boundary condition
Here,H25Hw , see for example Eq.~9!.

C. Centrifugal repulsion

Let us consider the operators belonging to the family
singular problems with the centrifugal potential~possibly
modified by harmonic attraction!:19,26

H52
d2

dx2 1
1

@n~n21!x2#
, ~16!
930 Am. J. Phys., Vol. 72, No. 7, July 2004
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with n>2 and D(H)5@ f PAC2(R); f , f 8, f 9PL2(R), f (0)
505 f 8(0)#. The operatorH in Eq. ~16! is self-adjoint. The
projection operatorP1 defined by (P1 f )(x)5xR1(x) f (x)
clearly commutes withH. The singularity of the potential is
sufficiently severe to enforce the boundary conditionf (0)
505 f 8(0) ~the generalized ground state function@cf. Ref.
27! may be chosen for this scattering problem in the fo
f(x)5xn].

The Hilbert spacesL2(R1) andL2(R2) are invariant un-
der the Schro¨dinger evolution exp(2iHt) generated byH and
the Schro¨dinger probability current vanishes atx50 for all
times. Consequently, there is no dynamically implemen
communication between the two disjoint localization are
extending to the negative or positive semi-axes ofR, respec-
tively. The respective localization probabilities of finding
particle on a positive or negative semi-axis are constant
the motion. Because of the singularity at 0, once trappe
particle is confined in one particular enclosure only and c
not be detected in another.

However, we note thatD(H) contains functions from
L2(R) that are restricted to obeyf (0)505 f 8(0) and not
necessarily to vanish on either half-line. Such functions m
have support on both the positive and negative semi-a
simultaneously. For example, a normalized linear combi
tion of two components corresponding to positive and ne
tive half-lines, respectively, is a legitimate element ofD(H).
Then, we can merely predict a probability to detect a parti
on either side of the origin. This probability is a constant
the motion, and there is no probability current through t
origin. In particular, due to the boundary conditions, iff
PD(H) thenx1 f PD(H) andx2 f PD(H).

The classic Calogero-type problem is defined by

H52
d2

dx2 1x21
g

x2 . ~17!

The eigenvalues areEn54n121(114g)1/2, where n>0
andg.2 1/4, with eigenfunctions of the form:

f n~x!5x(2a11)/2expS 2
x2

2 DLn
a~x2!, ~18!

Ln
a~x2!5 (

n50

n
~n1a!!

~n2n!! ~a1n!!

~2x2!n

n!
, ~19!

where a5 1/2 (114g)1/2. The g parameter range,21/4
,g,3/4, involves some mathematical subtleties concern
the singularity at 0 that are not sufficiently severe to enfo
the Dirichlet boundary condition.22,28 However, in the range
g>3/4 the ground state is doubly degenerate in the wh
eigenspace of the self-adjoint operatorH. The singularity at
x50 decouples (2`,0) from (0,1`) so thatL2(2`,0) and
L2(0,1`) are the invariant subspaces for the dynamics g
erated byH.

The singularity in both Hamiltonians~16! and~17! can be
removed by a simple replacementx2→(x21e) with e.0.
The limit e→0 would restore the singularity. As with th
infinite well limit for finite wells, the relatively easy to solve
singular models~16! and~17! may be considered as approx
mations of more complicated regular~free of singularities!
models.

We emphasize that impenetrable barriers are locate
points where a potential singularity enforces vanish
930P. Garbaczewski and W. Karwowski
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boundary conditions. In particular, such conditions are sa
fied by ~generalized! ground states and this mathematic
feature is responsible for the appearance of impenetrable
riers. LetfPL loc

2 (R), that is, we consider all functions tha
are square integrable on all compact sets inR. If there is a
closed setN of Lebesgue measure zero so that~strictly
speaking we admit distributions! df/dxPL loc

2 (R\N), then
there is a uniquely determined HamiltonianH such thatf is
its ~generalized! ground state. If (x2x0)21/2f is bounded in
the neighborhood ofx0 , then there is an impenetrable barri
at x0 . For a precise description of this mechanism inRn, see
for example, Ref. 18.

D. Multi-trapping enclosure

In contrast to the centrifugal repulsion where the singu
ity of the potential alone was capable of making the grou
state degenerate due to the impenetrable barrier at the or
we also can impose the existence of barriers as an exte
boundary condition. We introduce the differential express
H052 d2/dx2 and observe that for any realq, the function
c(x)5sin(qx) satisfies the equationH0c5q2c. The
operator Hq5H02q2 is self-adjoint when operating
on D(Hq)5@ f PAC2(R); f , f 8, f 9PL2(R), f (np/q)50,n
50,61,62,...# and sin(qx) is its generalized ground state. I
this case a particle localized at time 0 in a segment@(n
21) p/q ,n (p/q)# will be confined there forever. This
model can be considered as that of multi-trapping enclosu
with impenetrable barriers at pointsn(p/q). Note that in
every segment@(n21) p/q ,n (p/q)#, the corresponding
dynamics is identical with the one associated previously w
the infinite well.

VI. CONCLUSION

We have considered several singular models~such as the
infinite well! that serve as approximations of regular on
~such as the finite well! in the sense of suitable limits. If th
properties of the limiting model are to give a reliable, alb
approximate, description of a non-singular one, the phys
meaning of the observables should survive the limiting p
cedure. As we have demonstrated, such a viewpoint is c
sistent with localized dynamics in the presence of traps m
eled by impenetrable barriers.

There is one common feature shared by the models c
sidered in Secs. III–V: the Hamiltonian is a well-define
self-adjoint operator in each case, respecting various con
ment requirements by suitable boundary conditions. Ther
however no consistent canonical quantization procedure
can be carried out exclusively in the trap interior, becaus
the case of Dirichlet boundary conditions there is no s
adjoint momentum-like operator. If we do not ignore the e
terior of the trap the momentum observable paradoxes di
pear and the canonical quantization procedure reduces t
textbook meaning also in the presence of impenetrable
riers.
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APPENDIX: BASIC MATHEMATICAL CONCEPTS

We shall give a brief introduction to the basic mathema
cal concepts employed in the paper, with an emphasis on
distinctions between symmetric and self-adjoint operators
Hilbert space.

~1! Absolute continuity. Let f(x) be locally integrable on
R. Then f (x)5*a

xf(t)dt is called absolutely continuous an
denoted byf PAC(R). If f is continuous, thenf is differ-
entiable andd f(x)/dx5f(x). If d/dx is understood as an
operator in Hilbert space and its domain contains absolu
continuous functions, then we setd f(x)/dx5f(x), even if
f happens not to be differentiable.

~2! Domains of operators. Most of the operators discusse
in this paper are unbounded. When defining an unboun
operator, it always is necessary to specify its domain of d
nition. If A is an operator in the Hilbert spaceH, we write
D(A),H for the domain ofA. An operatorB is called an
extension ofA, which is often written asA,B, if and only
if D(A),D(B) andA f5B f for all f PD(A).

~3! Symmetric versus self-adjoint operators. An operatorB
is adjoint toA if ~a! (g,A f )5(Bg, f ) for all f PD(A) and
gPD(B), ~b! B is a maximal operator with the property~a!,
in the sense that ifB,C andBÞC, then~a! does not hold
for C. We write B5A* if B is adjoint toA. It follows that
A,C implies C* ,A* . We say thatA is symmetric if
A,A* and self-adjoint ifA5A* .

~4! Closed operator. Let us consider a densely define
operator A. For any gPD(A), we set igi15@(Ag,Ag)
1(g,g)#1/2. Theni•i1 is a norm inD(A). If f nPD(A) is a
Cauchy sequence ini•i1 , that is, limn,m→`i f m2 f ni150,
then f n also is a Cauchy sequence in the Hilbert spaceH
norm i f i5@( f , f )#1/2. By the completeness ofH there is f
PH such that limn→`i f 2 f ni50. If it follows that f neces-
sarily belongs toD(A) @that is, D(A) is complete in the
i•i1 norm#, then we say thatA is closed and we writeA

5Ā. If A is not closed, it still may have a closed extensio
That can be guaranteed by assumingD(A* ) to be dense in
H.

Under such circumstances thei•i1-norm limit limn→` A fn

exists for any Cauchy sequencef nPD(A) and moreoverg
5 limn→` A fn is the same for all sequencesf n converging to

the same limitf . Thus we may defineĀf 5 limn→` A fn . The

operatorĀ is a minimal closed extension ofA; Ā is called a

closure ofA. We haveA* 5(Ā)* , Ā* 5A* .
~5! Self-adjoint extension. Let A be symmetric,A,A* but

is not necessarily self-adjoint. The closureĀ of A obeys

A,Ā,A* . Even if AÞA* , we may haveĀ5A* and then
A is called essentially self-adjoint. However, typically w

may expect thatA* ÞĀ and at this point we need to invok
the notion of the self-adjoint extension.

Suppose thatB is a symmetric extension ofĀ, then

Ā,B,B* ,A* . Can we extend Ā so that Ā,B

5B* ,A* , that is, hasĀ a self-adjoint extension? If so, i
this extension unique? The full answer to those question
given by the Krein–von Neumannn theory of self-adjo
extensions of symmetric operators23 which we shall invoke
in the following.
931P. Garbaczewski and W. Karwowski
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~6! Deficiency indices and self-adjoint extensions. Let A

be a closed operator, that is,A5Ā. We denote byM,N,H
the spaces of the solutions of (A* 7 i )g50 and bym andn
respective dimensions of these spaces. The numbersn,m are
called deficiency indices forA. For simplicity, we assumem
andn to be finite. Then,A has self-adjoint extensions if an
only if n5m. Let the deficiency indices ofA form a pair
(n,n). Then there is a one-to-one correspondence betw
the self-adjoint extensions ofA and the family of all unitary
n3n matrices. We consider some examples in the followi

~a! ConsiderH5L2(a,b) and A52 i (d/dx) acting in
D(A)5C0

`(a,b),L2(a,b). We recall that f PC0
`(a,b) if

and only if f is infinitely differentiable and suppf ,(a,b).

Accordingly, Ā52 i (d/dx) with the domain D(Ā)5$ f
PAC(a,b); f (a)5 f (b)50%. Integration by parts shows tha

A* 5Ā* 52 i (d/dx) with D(A* )5AC(a,b). ThusĀ,A* ,

that is, Ā is a closed symmetric operator and the equati
(A* 7 i )g50 take the form (2 i (d/dx) 7 i )g50. The solu-
tions are exp(7x), and hencem5dimM5dimN51, and
the family of self-adjoint extensions is indexed by exp(ia)
with 0<a,2p. The self-adjoint extensions are determin
in terms of the boundary conditions;Aa5Aa* 52 i (d/dx)
with respective domains D(Aa)5$ f PAC(a,b); f (a)
5exp(ia)f(b)%.

~b! ConsiderH52 d2/dx2 with D(H)5C0
`(a,b). Then

we have H̄52 d2/dx2 with the domain D(H̄)5$ f
PAC2(a,b); f (a)5 f (b)5 f 8(a)5 f 8(b)50%, where AC2

3(a,b) denotes functions with absolutely continuous fi

derivatives. Two integrations by parts show thatH̄ is sym-
metric and H* 52 d2/dx2 acts in the domainD(H* )
5AC2(a,b). The deficiency indices ofH* follow from
(2 d2/dx2 7 i )g50. In both cases we obtain the same p
of linearly independent solutions: exp(6kx) with k5(1
2&)(11 i )/&. Therefore,M5N andm5n52.

~c! Now let a50 andb5`, that is,H5L2(0,̀ ). In this
case, exp(x) is not an element ofH, and exp(2x)PH. Thus
m50 andn51, and hence there is no self-adjoint extens
of A52 i (d/dx). On the other hand, the same reasoning

H̄ implies thatm5n51, and thus there is a one-parame
family of self-adjoint extensions on the half-line.

~d! If we choose a52` and b51`, that is, H
5L2(R), we havem5n50 for bothĀ andH̄. Therefore in
this case, bothA andH are essentially self-adjoint.

~7! Spectral theorem. The spectral theorem describes se
adjoint operators in terms of projection operators. We sh
describe how it works for operators discussed in the pap

For each 0<a,2p the family $en
a(x);n50,61,62,...%

defined by Eq.~3! is an orthonormal basis inL2(@0,p#). We
denote byQn

a the projection operator onto the one dime
sional space spanned by theen

a(x). The operatorPa , Eq.
~2!, can be written asPa5(n52`

n51`(2n1 a/p)Qn
a . The con-

dition for f to be in the domainD(Pa) of Pa follows by
direct calculation, see for example, our comment below
~4!. Now, we can define functions ofPa , for exampleHa

5Pa
25(2`

1`(2n1 a/p)2Qn
a with D(Pa

2) given by Eq.~7!.
Similarly exp(2iHat)5(2`

1` exp@2i(2n1a/p)2t#Qn
a . Note
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en

.

s

t

r

n
r

r

-
ll
r.

.

that although bothPa and Pa
2 are unbounded, the operato

exp(2iPa
2t) is bounded and defined on the whole

L2(@0,p#).

~8! Momentum representation. We introduce the notionP̃
of the ‘‘momentum operator in the momentum represen

tion:’’ P̃f (p)5p f(p);D( P̃)5$ f PL2(R);* up f(p)u2dp

,`%. We also have P̃2f (p)5p2f (p);D( P̃2)5$ f

PL2(R);* up2f (p)u2dp,`%. The operator exp(2iP̃2t)f(p)
5exp(2ip2t)f(p) is bounded and defined on the whole
L2(R).

If F stands for the Fourier transformation andF 21 for its

inverse, thenP5F 21P̃F and D(P)5F 21D( P̃). Analo-

gously we haveP25F 21P̃2F,D(P2)5F 21D( P̃2), and

exp(2iP2t)5F 21 exp(2iP̃2t)F.
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Coherer. The Coherer is a form of detector used in early continuous wave radio receivers. It is a glass tube filled with sharply cut silver and nickelings.
Silver electrodes make contact with the shavings on both ends. One electrode is connected to the antenna and the other to the ground. A serieson
of a battery and a relay coil is also attached to the two electrodes. When the oscillating signal from a spark transmitter is received, the shavings teto cling
to each other, reducing the resistance of the coherer. The clapper of an electric bell mechanism then strikes the coherer, shaking up the filings ansing the
resistance of the coherer to the original value. On the top, stamped in tiny letters, is ‘‘L.E. Knott’’ of Boston. The instrument is in the Greenslade Cllection,
and dates from about 1910.~Photograph and notes by Thomas B. Greenslade, Jr., Kenyon College!
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