Impenetrable barriers and canonical quantization
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We address an apparent conflict between the traditional canonical quantization framework of
quantum theory and spatially restricted quantum dynamics when the translation invariance of an
otherwise free quantum system is broken by boundary conditions. By considering the example of a
particle in an infinite well, we analyze spectral problems for related confined and global observables.
In particular, we show how we can interpret various operators related to trapped particles by not
ignoring the rest of the real line that is never occupied by a particleo@ American Association of
Physics Teachers.
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I. INTRODUCTION domain is required to belong 10?([a,b]); a andb are the
boundary points of the well. Then, the resulting “momentum

A proliferation of papers on the pedagogical and moreypseryaple” has a discrete spectrum and the momentum
formal aspects of the most idealized trapping model, the ingy5ce formulation is given in terms of a Fourier sefies.

finite potential well:~® sophisticated exercises in exact quan- Although we arrive at the one-parameter family of
tization on a half-in€, and the quantum néﬁechamcal aP- momentum-like operators, the problem is that none of them
proach to particles on surfaces with obstaclemotivates  ig compatible with the infinite wellDirichlet) boundary con-

renewed interest in reconciling the principles of canoniCalyiions There is no self-adjoint operator acting-aih d/dx
quantization W'th.the analysis Of. weII'-posed, spectral prOb'in the subspace of wave functionsliA([ a,b]) which vanish
lems for the Hamilton operator with Dirichlet boundary con- '

ditions. at the end points of the interval.

The purely spectroscopic analysis is represented in the On the other hand, we ShO.U|d2 notlcg that the canonical
literature on mesoscopic systems such as quanturﬂperatorsx andP are defined irL%(R) without any ref.er-.
billiards or microwave cavitieS~22 In this analysis one ence to the dynamics. Therefore, as a matter of principle,

avoids using canonical quantization and instead focuses €Y retain their physical meaning for any conceivable mo-

the statistical properties of the related Laplace operator O Of & particle, including the permanent trapping condi-

genvalues. Issues such as the position and momentum ofions: Implicitly, this viewpoint is represent.edzm Refs. 14, 3,
servables and the indeterminacy relations are omitted fronk>> and 16, where-izd/dx is interpreted inL%(R) and is
the ana|ysis of these Spa“a”y trapped quantum Systems_ not confined to the |nterV$h,b]C R. Therefore the exterior

A major surprise in this context is that a careful ana|ysi30f the infinite We” does matter. The traditional momentum-
of the conceptual background reveals unexpected inspace formulation for wave packets, introduced by the Fou-
consistencies and paradoxe&.They appear when one ap- fer transform
plies the traditional apparatus of canonical quantization to
models of trapping and arise from attempts to give a correct 1 . iox
meaning to.the qllfferent|al expre;smmhd/dx. It is pos- d(p,t)= J eX;{ — p_) P(x,t)dx, (1
sible to define different self-adjoint operators by means of N2mh J - h
the same differential expression that leads to conflicting op-
tions (compare Refs. 5, 7, 8 and Refs. 3, 14) 1& what
should be the momentum observable and consequently td;@
momentum representation of wave functions for a particle ifl'®
the infinite well.

The textbook canonical quantization procedure for a par
ticle in one spatial dimension is carried out in the Hilbert
spacelL?(R) of square integrable functions on the real line
R. The canonical position and momentum operatofs )
X(x)=xf(x), (Pg)(x)=—i# (d/dx) g(x) are defined to act
on appropriate sets of functiofigg  L2(R). If the motion of
the particle remains confined to a segmgath]CR, then
the corresponding wave functions are supported &b ]

gnd t.h.us form azsubspace b?(R)' This subspace may be The above mathematical inconsistencies are normally ig-
identified withL“([a,b]), the Hilbert space of square inté- ;e in the physics-oriented literature and the primitine
grable functions otia,b]. , o finite well) example of the quantum mechanical energy spec-
Therefore, for spatially confined dynamics, it appearsyym is not at all analyzed in terms of the full-fledged
natural to neglect thérrelevan) complemenR\(a,b) of the  canonical quantization formalism. Interestingly, there is also
segmenfa,b] and to adopt the quantization in the interval no agreement among mathematically oriented physicists
strategy””® One still employs the operaterizd/dx, butits ~ whether one can introduce a physically justified candidate

s been exploited in the analysis of the infinite well and
If-line versions of the wave packet dynamicé:® The
notion of a standard momentum observable with a continu-
ous spectrum also is present in the derivation of so-called
entropic uncertainty relations for the infinite wéfl.

The problem is that the differential expression
— (h?/2m)(d?/dx?), whose domain contains only functions
f e L2(R) such thatf(x)=0 if x<a andx=b, is not a self-
adjoint operator inL?(R). Hence, the infinite well energy
observable definition is defective, if naively extended to
L?(R) to conform with the presumed domain propertiesof
andP.
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for the momentum operator in the infinite well or the half- ition than to the precision of mathematics. This success is
line settings. The folklore statement reads: thereadamo-  one reason why many physicists neglect sophisticated math-
mentum observabfe. ematical arguments.

For the above reasons we reconsider the problem of the Although we can regard the correspondence between ob-
quantum dynamics of a particle that is restricted to a segmerservables and self-adjoint operators in Hilbert space as gen-
of a line by means of impenetrable barriers. Quantum dyerally accepted, the precise formulation of the operator do-
namics with barriers involves a number of mathematicalmains often is considered an unnecessary nuisance or
subtleties: it is necessary to keep in mind the distinctionmathematical pedantry. However, we argue that the domain
between symmetritHermitian) and self-adjoint operators. A subtleties in the operator analysis carry crucial physical in-
discussion of self-adjoint extensions of symmetric operatorsiormation and must not be disregarded.
with a focus on the teaching of quantum mechanics, can be The infinite well is a special case of the class of quantum
found in Ref. 5. Our goal is to resolve the apparent momenpjjjiards, which are models of a quantum particle that is per-
tum observable paradoxesthat prohibit a consistent use of manently trapped in a bounded region of arbitrary shape.
canonical quantization procedures in the analysis of quantumihejr energy spectra can be established only for relatively
systems with trapping boundary conditions. , simple planar R?) confinement regions and suffer from the

We resolve the pa}radgx by acknpwledgmg the existence %ame momentum observable “paradoxes” as the infinite well
the rest of the real line, in conformity with the Fourier trans- .0 4e|. Investigations of the eigenvalue problem for the La-
form definition of Eq.(1), even if we know that the trapped 3¢ian on a connected and compact domain of arbitrary
particle will never occupy that space. The major IocallzatlonShape inR2 with Dirichlet boundary conditions have a long
mechanism is rooted in the dynamics of the particle which isn. . TR e

istory. In its full generality it is one of the most difficult

generated by a properly defined Hamiltonian. problems in mathematid$, but suitably simplified it is a

We give physical motivations for the validity of the stan- | d for the studv of . i i
dard momentum observable notion for the trapped particl@ ayground Tor the study of mesoscopic systems, quantum
dots, and other nanostructures.

by investigating the infinite well as the limit of a series of . S .
y gatng For a wide class of Hamiltonians, such as those with

finite wells. The idealization of an infinite well is given bounded al b di . f K
physical meaning by assuming that it approximately defounde potentials, one observes dispersion of wave packets.

scribes more realistic finite well models. To this end we need NUS: even if the particle is initially confined within a certain
to maintain consistent interpretations of the concepts of polnterval onR, there is a nonvanishing probability current
sition, momentum, and energy operators in the course of th&rough the interval boundaries.

limiting procedure. This consistency can be achieved if we We are interested in the situation when the quantum dy-
consider the infinite well eigenfunctions as the functions inhamics is so restrictive that a particle once localized cannot
L%(R), that is, defined on the whole & but supported only ~be found on certain parts of the real line at any time. This
by[a,b] < R. We discuss the related energy observable issugituation amounts to saying that there is no tunnelfiig,or

in Secs. III, IV, and VB. We employ the usual notions of @Y other form of quantum mechanical transport between
position and momentum onR and no recourse to those parts and their complement Bn Simple examples of

momentum-like operators with a discrete spectrum isSUch circumstances are provided by introducing impen-
necessary.’ etrable walls. These walls can be interpreted as ideal trapping
The structure of the paper is as follows. In Sec. Il weenclosures orR. Typical barriers are externally imposed
outline the paradoxes that have been found to hamper a coirough suitable, often discontinuous and more singular, po-
sistent discussion of quantum systems with rigid walls. Intentials. Less spectacular but important examples of impen-
Sec. Il we describe the outcome of a rigorous quantizatioretrability are related to the existence of nodes, nodal curves,
of particle motion in a finite interval on the lire. In Sec. IV~ or surfaces of the generalized ground state functisee
we analyze an infinite well as a limit of a finite one and Refs. 18 and 10
discuss the groundwork for Sec. V where we propose to relax The notion of impenetrability does not directly follow
the assumptions of Sec. l(quantum mechanics in a trap from the canonical quantization procedure. A typical quanti-
only) by considering the trap exterior as a necessary elemem@ation recipe first presumes that there should be primitive
of the theory. In view of the existence of the standard notionkinematic observables related to the position and momen-
of the position and momentum observablesLif(R), the  tum, for example, the self-adjoint position and momentum
canonical quantization procedure in the presence of imperPperators. It is the(secondary dynamical observable, the
etrable barriers is justified and removes the conceptual obsamiltonian of the system, that determines the evolution for

stacles discussed in Sec. . the system. Thems(x,t) ultimately appears as a solution of
the partial differential equation with suitable initial/boundary

Il. QUANTUM SYSTEMS WITH BARRIERS: conditions. Hence, localization essentially arises due to the

MATHEMATICS VERSUS PHYSICS dynamics with confining boundary conditions.

Observables are represented by self-adjoint operators
Although it is generally accepted that physics is written inwhich may be bounded or unbounded. Obviously, the gen-
the language of mathematics, there are disagreements emator of unitary dynamics, the Hamiltonian, has to be among
how much mathematical background is needed to give #hem. The self-adjointness property is required because of
proper description of physical phenomena. the spectral theorem which, as a general solution of the ei-
The foundations of quantum mechanics employ both thegenvalue problem for a given operator, determines a unique
precision of modern mathematical language and intuitiodink between an operator and its family of spectral projec-
based on the analysis of physical phenomena. The majdions. The projection operators in turn let us state unambigu-
developments in quantum theory and its ability to successeus elementaryyes—ng questions about the properties of a
fully describe the microworld are due more to physical intu-physical system. For example, by using projection operators
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we may ask for the probability of locating a particle in a two non-communicating segments, see for example, Refs. 5
given interval or to find its momentum within a certain and 15. A quantum particle, once initially localized on the
range. half-line, either positive or negative, would reside on the
However, in connection with the notion of an unboundedhalf-line indefinitely, with no chance to change the localiza-
observable, there are associated very rigid domain restridgion area. Again, the usual momentum representitibt?
tions. We shall address this point in some detail in Sec. lllmakes sense in the analysis of the dynamical behavior of
An immediate problem can be seen if we consider a particlavave packets. However, it is well knowrthat a symmetric
on R and assume that it permanently resides between twoperator—i# (d/dx), as defined orCg(R™) (the space of
impenetrable barriergigid walls), placed at pointa andb  the infinitely differentiable functions of compact support in
in R. Clearly, the conditiony(x,t)=0 for all x<a and x the positiveR* or negativeR™ half-lines ofR), has no self-

=D is enforced on the wave function of a particle. adjoint extensions irL*(R*) or L%(R"). In other words
One may think that a Hamiltonian can be simply definedthere is no self-adjoint momentum operator of the form
as the differential operator (%2/2m)(d?/dx?), both inside  —i7% (d/dx) for a particle on a half-line. Accordingly, the

and outside the impenetrable walls. The point is that such aguthors of Ref. 5 conclude that “... the momentum is not a
apparently natural, globally defined Hamiltonian is not ameasurable quantity in that situation.” _
self-adjoint operator. It is not even a symmetric operdtor. 10 summarize, the standard Fourier integral analysis on
Hence, a consistent definition of the quantum dynamics ihe real line, Eq(1), has been applied to wave packets of a
the presence of a barrier needs a careful examination of selparticle confined to a segment 8 or to the half-line and
adjoint operator candidates for the Hamiltonian of the quanmterpreteﬂ as a consistent spectral analysis of the momentum
tum system. operat9r°f' > According to Refs. 5 and 7, the previous
Another obvious conflict with intuition appears when one@nalysis can be seen only as an admissible computational
tries to interpret the differential expressionizid/dx as a  device having nothing to do with the momentum operator
momentum operator in the barrier context. The continuou?nd the true physically relevant state of affairs for a particle

spectrum of the momentum operator for a free quantum pacoMfined to the segment is said to refer to the spectral analy-
ticle on a line is well-known. The notion of momentum is not SIS of the momentum operator in terms of Fourier series. For
. a particle confined to the half-line, the notion of momentum

so obvious for the infinite well model in view of the textbook . . X
wisdom: “... momentum operator eigenfunctions do not exist™ said not to be defined.
in a box with rigid walls, because then they would vanish
everywhere."21 In contrast, another well known textbddk 1. QUANTIZATION IN THE FINITE INTERVAL

does not prohibit such notions as the momentum measure-

ment and the distribution of continuous momentum values in We now discuss the mathematical issues of the quantiza-
stationary states, these being interpretedL46R) wave tion on the intervala particle confined to a segment Rj.
packets. A quantum particle in an infinite well gives rise to aWe begin with some observations concerning a free particle
pictorial illustration of the wave packet dynamiés:® on the real liner.

An attentive reader must be confused, because both dis- In one-dimensional models on the real line, the momen-
cussions seem to be justifiéti?! although the discrepancies tum operatorP and the free Hamiltoniai are self-adjoint
between the two points of view were not explained or re-operators defined by-izd/dx and (—#2/2m)d?/dx?, re-
solved in a single text. In Refs. 14, 3, and 15, an explicitspectively. However, these standard differential expressions,
answer was formulated for the probability of a measuremenivhen defined on the spa@g(R) of infinitely differentiable
of the momentun® of the particle yielding a result between functions of compact support, are not self-adjoint but only
p andp+dp for a particle confined in an infinite well. All  symmetric operators. In the following, all coefficients such
calculations explicitly involve thé ?(R) Fourier integral Eq.  as# and#?/2m will be set equal to unity for convenience.

(1) for spatially confined wave packets, thus suggesting that BecauseCg(R) is invariant under differentiation, the sym-
the infinite well problem may not be in conflict with the metric operator- d?/dx? can be interpreted as the square of
standard notion of the momentum operafanderstood as another symmetric operatori (d/dx), in the sense that it
the generator of spatial translationsliA(R)]. Such an op- means two consecutive actions. To obtain the self-adjoint
erator has a continuous spectrum. operators from the symmetric ones, we must expand their

The same infinite well problem has been summarized indlomains. There ara priori two possibilities:

Ref. 7 as follows: the spectrum of the opera®ois discrete,
hence the Hilbert space in the momentum representation b
comes the Hilbert spadé of square summable sequences,
see for example, Sec. Ill. Then, E@L) is interpreted as a : Lo s
mathematically equivalent version of the infinite well wave free particle Hamiltonian ope.rat(bif— P=. 22
function ¢(x,t), butnot as its momentum representation. (1) We can extend the symmetric operaterd“/dx” by

In Refs. 14, 3, and 15, the differential expression taking its closure to a self-adjoint operatdf, which
—ifd/dx is interpreted inL2(R), hence the exterior of the may be called the Hamiltonian operator.
infinite well does matter. In Ref. 7, the same differential _
expression is localized to the interior of the well by demand-These two procedures give the same reddit=P2=H; if
ing that its domain belongs to?([a,b]), with a andb the  considered irL%(R).
well boundaries, so the rest of the line is irrelevant. The situation is different when we passlté([a,b]), be-

Analogous conflicting interpretations can be seen in theause now the mathematical subtleties unavoidably enter. It
discussion of a single impenetrable barrier that dividésto  turns out that there is not one, but a family of infinitely many

éi) We can extend the symmetric operator (d/dx) by
taking its closure to a self-adjoint operatér which
is then called a momentum operator, and define the

926 Am. J. Phys., Vol. 72, No. 7, July 2004 P. Garbaczewski and W. Karwowski 926



self-adjoint operators in.?([a,b]) whose action on func-

tions from the domain is defined by the same expression

—i(d/dx). In the following, we shall simplify the notation
by choosinga=0, b== and hence the Hilbert space
L2([0,7]).

The differential expressions-i (d/dx) and — (d?/dx?)
when acting inC;(0,7) [infinitely differentiable functions
with support included in the open interval (,CR] define
symmetric operators in.?([0,77]). Obviously, Cg(0,m) is
invariant under differentiation and thus d?/dx? is the

square of—i (d/dx) in the sense of two consecutive actions.

However, now the procedurés and (ii) require some care.
In what follows we shall refer to the Krein—von Neumann
theory of self-adjoint extensions, see, for example, Refs.
and 23, and the Appendix.

Let us begin with procedure(i). We denote A
=—i(d/dx) onCy(0,m). Then its closuré= —i (d/dx) is
defined as the differential expressien (d/dx) acting on an
expanded domainD(A)={feAC[0,7];f(0)=0=f(m)}.
The notation AC refers to the absolute continuityfofzhich
gives meaning to the first derivativié. The boundary con-
ditions emerge in the process of taking the closure.

The operatoA is a closed symmetric operator, but is not

self-adjoint. To find the self-adjoint extension Af we need
to establish its deficiency indic8$??3In the Appendix we

show them to bed1l,1), which implies thatA has a one pa-
rameter family of self-adjoint extensions ir?([0,7]). We
denote the extensions b3, :

d
d_Xl

P

23

D(P,)={feAC[0,7];f(0)
=explia)f(m)} (2)

Note that there are no other self-adjoint extension# of
and thus no other self-adjoint operators acting-agd/dx).
For eachy, there is inL2([0,7]) an orthonormal basis that is
composed of the eigenvectors Bf,,

(O<a<2m).

J

wheren takes integer values, and the eigenvalue® pfare

en(x) expi X,

)

o
2n+ —
o

o (64
pr=2n+ p 4
Let us introduce another definition fob(P,). If f
eL?([0,7]) is expressed in terms o€’ so that f(x)
=3,f%%x), then feD(P,) if and only if =,n?fd?

<o, This supplementary characterization of the domain will (i)

prove useful to define functions of the operatBrs, cf. the
spectral theorem description in the Appendix.
The operatoH , defined by
Ho=(Pa)?, 5
has the same family of eigenvectorsRs, but its eigenval-
ues are

927 Am. J. Phys., Vol. 72, No. 7, July 2004

5

2
@ a\2 @
En=(Pn)"= 2n+;) (6)
for all integersn. As a consequence,
D(Ha)=|f=2 fres; > n4|fﬁ|2<oo]. @)
n n

ThusD(H,)CD(P,) andD(P,)=P,D(H,). It also fol-
lows that
d2
H

dx®’
f(0)=expia)f(m), f(O)=exgia)f’(m)}, (8

where the AC notation gives meaning to the second deriva-
tive of f. Therefore the operatdt , in Eq. (8) can be safely
interpreted as two consecutive actionsRyf, Egs.(2) and
(5), where both operators are self-adjoint.

Now let us considetii). The closure of— d?/dx? as de-
fined onCy(0,m) is H=— d?/dx? with the domainD(H)
={f e AC’[0,m];f(0)=f(m)=F"(0)=f"()=0}. The
closed symmetric operatét has the deficiency indicdg,2).

Therefore the family of all self-adjoint extensionstdfis in
one-to-one correspondence with(2), the family of all 2
X 2 unitary matrices, see for example, Refs. 5 and 23.

We can devise a family dfl ,e U(2), 0<a<2, whose
choice is equivalent to the boundary conditiorig0)
=exp(a)f(m), t'(0)=exp(a)f’(n), and thus definesl,
=H,, Eqg. (5, with the domainD(H,), Eg. (8). Conse-
quently, the two procedurd$) and(ii) are equivalent for all
operator paird,, P, with O<a<27.

The family U, is a proper subset dfi(2) and thus there
are Hy for which (i) does not work. For example, for a
suitable choice of a unitary matrild,> the corresponding
self-adjoint operatoH,=H,, is the infinite well Hamil-
tonian:

D(H,) ={feACY0,7],

=

d2
(Huf )00 == g2 f(x),

D(H,,)={f e AC?[0,7];f(0)=f(7)=0}. (9)

In the infinite well context provided by E¢9), we are not
allowed to interpretH,, as the square of any self-adjoint
—i(d/dx) =P,. The reason is that nB, respects the Di-
richlet boundary condition, which makes it impossible to
identify the HamiltonianH,, in L?([0,7]) as Pi. Conse-
quently, the quantization in a finite interval gives rise to the
following.

(i) The one-parameter family of Hamiltoniahk, of Eq.
(8) with the momentum operator®, of Eq. (5),
whose eigenvalues form discrete spectra.

The HamiltonianH,, of Eg. (9), suitable for the infi-
nite well problem, but then with no notion of a mo-
mentum observable.

To complete the quantization scheme on the interval, we
need to introduce the position operat@rdefined as Qf)
X(x)=xf(x). In the present case it is a bounded operator,
contrary to what is normally expected from a member of a
canonically conjugate position-momentum pair.

P. Garbaczewski and W. Karwowski 927



The canonical commutation relatio@sP,— P,Q=il for-  one. In this section, we are motivated by the considerations
mally hold on allf e AC(a,b); f(a)=f(b)=0, but cannot of Ref. 5 where the previously mentioned conceptual discon-
be given in Weyl form(that is, in terms of suitable unitary tinuity between the finite well and infinite well models is
operatorg which is indispensable for the mathematical con-clearly emphasized. _ o
sistency of the canonical formalism. Note that by following It is natural to consider the half-line case as the limit of the
procedure(i), which yields Eq(5), we have lost a direct link ~ Step potential. Again we encounter pr_ol?lems_wnh the idea of
to the infinite well problem. the momentum observable: for any finite height of the step

For the special case of=0, we end up with a degenerate Potential, there exists a momentum observalaleunique
spectrumE, = (2n)2. This spectrum corresponds to the fa- Sl-adjoint operator acting as the differential expression

miliar plane rotator. Fora+#0, we can relate the spectral — 17 (d/dX)], while for an infinite height there is no self-
problem Eq.(6) to the rotation of a charged particle around adjoint extension correspondmg:&a h (d/dx). The conclu-

an infinitely thin solenoid? the parametew is related to the ~Sion of Ref. S(see Sec. 7)4that "an infinite potential can-
magnetic flux. HenceH,, P, refer exclusively to rotational NOt be simply described by the limit of a finite one”
(angular dynamidsfeatures of motion. Neithea?/dx? with contributes to the paradoxes and inconsistencies we dis-

- " cussed in Sec. Il.
the Dirichlet boundary condition, nor any othefy (pro- If one tries to model a patrticle that is localized on a seg-

vided U=#U,) fit the above canonical quantization picture; nent of 4 line, the confinement is enforced by considering
we recall that no self-adjoint momentum operator of the formyamjjtonians with vanishing boundary conditions at the ends
—i(d/dx) is compatible with the Dirichlet boundary condi- of the interval. This boundary condition can be imposed ei-
tions. _ _ _ ther by the singularity of the potentiéuch as the Pazhl—

In connection with Eq(6), the textbook solution of the Teller potential in Ref. ¥ or “by hand” as for the infinite
infinite well yields the familiar spectral formul&,=n?  well.>” The latter case is justified by introducing the vague
wheren=1 is a natural number. This result is incompatible concept of a finite potential within the spatial segment and
with EX=(2n+ a/m)?, Eq.(6), wheren is an integer. More-  plus infinity otherwise.

over, the related eigenfunctior§(x) do not respect the Di- _ The reasoning goes as follows. A particle that is trapped
richlet boundary conditions in contrast to the “true” infinite inSide the infinite well 8<x< 7 must have its wave function

well Hamiltonian eigenfunctions/,(x) = J[2/7] sinnx. A equa] to zero outsid.e the well. To ensure this condition, we
possible physical interpretation ¢t that falls neither in cons@er the pote.ntla‘l/(x)_:oc on the complement_ of the
class(8) nor (9) is discussed in Ref. 5. open mterva_t(O,rr) in R, while V(x) =0 between the impen-
We stress that the interpretation Bf, in Eq. (2) as a  etrable barriers. . . .
momentum operator for a trapped parti¢tes advocated in __NOte that the corresponding stationary Scfinger equa-
Refs. 5—7 stems from the fact that its differential expressiont'on’
reads—i (d/dx), just as it does for a.pallrticle on th.e real_ line. [ —V2+V(X)]e(x) = E(X), (10)
Some obvious consequences of this impllci(R) input in ) ) ]
the isolated trapl.2([a,b]), include:(1) the non-uniqueness with X e R has no meaning beyond th.e chosen interval.
of the momentum operatof?) the non-existence of the mo-  BY formally setting>x<0=0 in the “improper” area, one
mentum operator on the half-line, a8 a conceptual dis- argues that in view of E10), the wave functionj(x) must
continuity in the interpretation of the momentum observablevanish forx<0 andx= . Then, one concludes that instead
betweenL?(R) andL?([a,b]) L?([a,*]).° The latter con- of demanding unusual properties \é{x), it is more natural
ceptual discontinuity relates to the limiting procedures wherto impose restrictions on the wave functions demanding that
passing from regulafsuch as the finite well with its unique e L?([0,7]); #(0)=(mw)=0 (the dynamics is spatially
momentum observableo singular problemgsuch as the restricted td0,7]). In other words, the rest of the line can be
infinite well, or half-line cases, with non-unique or no mo- neglected.
mentum observable Now, let us consider &dis)continuity in passing to the
infinite well from a finite well. We have mentioned that the
infinite well problem acquires a physical meaning as an ap-
IV. THE INFINITE WELL AS THE LIMIT OF THE proximation(by suitable limiting procedure®f a finite well
FINITE ONES model. Let us considerV(x)=0 for xe (0,7) and V(x)

It is common for physicists to replace a complicated= V>0 for x& (0,7). As Vy— e, the number of eigenvec-
physical system by a simpler solvable model and then obtaitors for the finite well problem- V2+V also goes to infinity.
approximate answers to the originally posed questions. Oftehet us label byne N the eigenvalueEX in increasing order
the solvable models are more singular than the realistic onegnd the corresponding eigenfunctions bY:

In quantum mechanics textbooks, the piecewise constant po-

tentials that form sharp barriers, steps, or wells are implicitly (= V2+V) ¢ =E Y. (11)
interpreted as idealized versions of continuous potentials of ) .

similar shapes. A more singular example is the Dirac delta For fixedn we obtain for large values of, (compare for
potential which often is used instead of a very narrow andxample, Ref. 5

very deep potential weff?

Infinite well (or infinite barriey models make sense if they EV_E>
are capable of giving approximate answers to questions con- " "
cerning finite wells. It is important that the validity of the
approximation be controlled, which requires the notion ofwhereE; =n?is the infinite well energy eigenvalue with
continuity when passing from the finite well to the infinite =1,2,.... We also have

1-—

: (12

4
’7TVO
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pr(x=0)= @( %o) expl — [x| Vo, (133
Y (0=x<m)
\F . 1 .
=\ sinnx+ - VO)[(nTr)cosnx—smnx] ,
(13b
drx=m)== \E i) exif—(x-m\WVo]. (139
n W,
Accordingly, whenVy— oo, thenEX—> E,, and
bn(X)— b7 (x)= \/%sinnx (14

for O=x=m and zero otherwise. The infinite well Hamil-
tonian eigenvalues and eigenfunctions are thus smoothly re;
produced and we keep under control the accuracy of th
approximation of the finite well by its infinite well idealiza-

tion.

We need to achieve more than the convergence properti
(12) and(14). Namely, we are interested in verifying whether

language of Ref. 7, the Fourier series stands for the momen-
tum representation formulation if the momentum operator is
chosen to beéP,, as given by Eq(2). The Hilbert space of
this momentum representation is thE¥{Z), the space of
square summable sequendgs wheren runs over the set of
integersZ. Let us note that the self-adjoint operatoPsjn
L?(R) andPy in L?(0,7), both exemplify the spectral theo-
rem and the notion of momentum representation, but are fun-
damentally different operators.

In the course of all limiting operations, the notion of
L?(R) and thus of the entire real line inpGtotably of the
usual momentum observaples implicit. This observation
lends support to the standard momentum representation con-
cept, employed in Refs. 3, 14, and 15, which can thus be
adopted to the infinite well and the half-line wave packet
dynamics. Consequently, if we had followed the strategy of
Refs. 7, 5, and 8 and ignored the rest of the real line, the
restriction of the model td.?([0,7]) would have ruled out
Fo, . As a result, the usual concept of the momentum op-
rator as the generator of the translation group would no
nger be appropriate and the interpretation in Ref. 5 would
make a sharp distinction between the finite well and infinite
well cases. Such a distinction is untenable on physical

eg%ounds.

the finite well notions of position, momentum, and energy

observables go through the limiting procedu#e recall the
no-go claim of Ref. 5.

Note that the limity — ¢, asVy— holds in the norm
of L2(R). It follows that for any interval X; ,x,), we have,

using an obvious notation, the following behavior of the lo-

calization probabilities: PY . = f§j|¢‘n’(x)|2dx_> 2

X[ pr () |dx=P5_(x x, a8SVo—. So, we have secured

V. QUANTUM DYNAMICS WITH BARRIERS

A. Trapping as a dynamical effect

Now we shall analyze the main outcome of our previous
discussion: we can make sense of various operators for
trapped particles by not ignoring the rest of the real [itne
exterior of the trajp

the standard meaning of the position measurement for both | the canonical quantization scheme, quantum mechanics

the finite and infinite well problems.

on the entire real line refers to the correspondence principle,

These Iimiting_ behaviors_ are paralleled by the_c_onver-which introduces the positio® and momentunP observ-
gence of the suitable Fourier transforms. Indeed, it is well ;o5 45 unbounded operatord #(R). The intuitive defini-

known that the Fourier transform, as definedd§(R), can
be extended to a unitary operator lif(R). Therefore, the
Fourier transform ofﬁx also converges in thie?(R) norm to
the Fourier transforn¥¢;, of ¢, . Hence, for any {§:,p,),

we have thaPy_, o =/1?Fd,(p)|°d p—>f2j|]—'¢§f(p) 2

1

tion of multiplication and differentiation operators on smooth
functions with a reasonable fall off at infinity is sufficient to
determine uniquely the conjugate self-adjoint operators that
obey the canonical commutation relations in the Weyl form
(that is, by means of unitary operatprhis statement is
purely kinematical and thus independent of any dynamics.

Xdp= P;E(pl’pZ) asVy—=. Thus, we conclude that if the  The free particle Hamiltonian,

infinite well problem eigenfunctions are considered as the d2
functions defined omR but supported by0,7], then we can Hi=— Bl
employ the usual notions of position and momentumRon

and these notions are common for the finite and the infinitémplies thatP commutes withH;, and thus is a constant of
well. The conceptual continuity in the notions of position, motion which supports the view tha& is the momentum

momentum, and energy measurements survives the limitingperator. For the free particle the identity5) relates the

=p? (15)

procedureVy— oo,

We emphasize that fot.?(0,7), we have two non-
equivalent ways of making the Fourier analysisL(0,)
is considered as a subspace of?(R), then
FL?(0,7)CL%(R). More precisely, if G4 f e L?(0,7), then
FfeL?(R), but Ff does not belong th?(0,7). Because the
support off is compact, the functiodFf can be analytically
continued to the entire complex plane. ThusFif vanishes
on R\[0,7], it also vanishes identically oR.

If R\[0,7] is neglected and.?(0,7) is considered inde-

HamiltonianH; and P2. In other cases, there appear poten-
tials or boundary conditionsuch is the case for the half-line
and infinite well problems Whatever the dynamics and thus
the general Hamiltoniatd may be, we can safely assume
thatH is self-adjoint and bounded from below.

Let us consider the general mathematical mechanism of
permanent confinement. Lél be a Hamiltonian operator
and we choose an open inten@IZ R with yg denoting its
characteristiqindicatop function: xg(x)=1 for xe G and
vanishes otherwiséTo conform with the previous notation,

pendently, then we can employ the Fourier series. In theve suggest the identificatioB=(a,b) andgi[a,b].)
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with n=2 and D(H)=[feAC*(R);f,f’,f" e L?(R),f(0)
=0=1f'(0)]. The operatoH in Eq. (16) is self-adjoint. The

If fe D(H), thenysf typically does not belong tB(H).
If, however, for a givenH and G, the propertyf e D(H)
necessarily implies tha¢sf € D(H) thenyg, considered as projection operatoP, defined by P f)(x)= xr+(X)f(X)

a projection operator ih?(R), commutes with the spectral clearly commutes withH. The singularity of the potential is
projectors ofH and hence with the unitary operator exp sufficiently severe to enforce the boundary conditid)
(—iHt). This property implies an invariance of the subspace=0=f’(0) (the generalized ground state functimf. Ref.

[feL2(R);suppf CG] with respect to time evolution. Thus, 27) may be chosen for this scattering problem in the form

: . . e = . d(x)=x"].
?f at some mste_mt of_t|me a particle is localized@ that is, The Hilbert spaces?(R*) andL2(R~) are invariant un-
Its wave functlorTf is supported F)y a subset @, then  gor e Schrdinger evolution exp{iHt) generated by and
supdg(t) =exp(-iHt)f;CG for all timest. Hence the par- the Schrdinger probability current vanishes at=0 for all
ticle has always been i@ and will stay there forever. times. Consequently, there is no dynamically implemented

Consequently, if the dynamics is defined by the Hamil-communication between the two disjoint localization areas
tonianH in L%(R), then the confinement i occurs if and ~ €xténding to the negative or positive semi-axe®pfespec-
only if H can be split into a direct su =H,;@®H, corre- tively. The respective localization probabilities of finding a

. Lo o 2, particle on a positive or negative semi-axis are constants of

sponding t.o the dgcgmpos;tldn (R)=L (R_\G)@L (G) the motion. Because of the singularity at 0, once trapped, a
so thatH; is self-adjoint inL“(R\G) andH, is self-adjoint

il particle is confined in one particular enclosure only and can-
in L2(G). Then exptiH;t) and exptiH,t) describe the

time evolution of the system localized R\G andG, respec-
tively. Moreover exp(iHt)=exp(—iHt)exp(—iHt).

not be detected in another.
However, we note thaD(H) contains functions from
L?(R) that are restricted to obef(0)=0=f’(0) and not

Thus the dynamics from the outset takes account of th@ecessarily to vanish on either half-line. Such functions may

impenetrable barrier at the boundary Gf This effect is

have support on both the positive and negative semi-axes

purely dynamical, and there is no reason to modify the means_imultaneously. For example, a nor_malized Ii_n_ear combina-
ing of kinematical variables such as the position and momenton of two components corresponding to positive and nega-
tum (see Sec. Ill. Consequently, if a particle described by tive half-lines, respectively, is a legitimate elementdfH).

. : : I~ o Then, we can merely predict a probability to detect a particle
the v;/ale functionf (x) is localized inG, then necessarily on either side of the origin. This probability is a constant of
felL“(G). However,

now the momentum representationthe motion, and there is no probability current through the
readsf(x)— (Ff)(p)="f(p), by the Fourier integral, Eq. origin. In particular, due to the boundary conditions,fif
(1). If G is bounded, therFf is an entire function. So, ifa eD(H) theny,feD(H) andy_feD(H).
particle at some(initial) instant of time is localized in a The classic Calogero-type problem is defined by
bounded region in space, then its momentum is spread over 2
the whole real line.

In the following we illustrate the qualitative physical and
mathematical mechanisms leading to the above reduction
L?(R) by the dynamics.

Y
=——+X°+ .
et Te

(17

Fhe eigenvalues arE,=4n+2+(1+4v)2 wheren=0
and y> — 1/4, with eigenfunctions of the form:

X2
_ (2a+1)2 A a2
B. Infinite well f(x)=x EXF{ 2>Ln(x ), (18
First, we defineH = — d?/dx? through its specific domain v (n+a)!  (—x3)"
D(H)=[f e AC2(R):f,f’,f" e L%(R),f(0)=0=f(m)]. We La(x )=§0(n_v)!(a+v)! T (19)

recall that the A€ notation refers to the absolute continuity
of the first derivative which gives meaning to the secondwhere a= 1/2(1+4y)Y2 The y parameter range;-1/4
derivative (in the sense of distributions, as a measurable<y<3/4, involves some mathematical subtleties concerning
function). The operatofH,D(H)} is self-adjoint and the de- the singularity at O that are not sufficiently severe to enforce
composition LX(R)=L3(R\G)®L2(G), together with H the Dirichlet boundary conditiof??® However, in the range
—H,®H,, holds forG=[0.7]. Thus the traditional infinite 7~ >+ the ground state is doubly degenerate in the whole
. : . . eigenspace of the self-adjoint operakbr The singularity at

well problem is nothing else than the analysistbf in the > 2

2 . . . x=0 decouples {,0) from (0+ =) so thatL“(—,0) and
spacelL“([0,7]), with the Dirichlet boundary condition. |, . . .
Here,H,=H,, . see for example Eq9) L<(0,+<) are the invariant subspaces for the dynamics gen-

e W ' erated byH.

The singularity in both Hamiltonian& 6) and(17) can be
removed by a simple replacemext— (x?>+ €) with e>0.
The limit e—0 would restore the singularity. As with the
Let us consider the operators belonging to the family ofinfinite well limit for finite wells, the relatively easy to solve

singular problems with the centrifugal potentiglossibly — singular model¢16) and(17) may be considered as approxi-
modified by harmonic attractigr{®2% mations of more complicated reguléree of singularities

2 models.
H=— d + 1 We emphasize that impenetrable barriers are located at
dx? [n(n=1)x°]’ points where a potential singularity enforces vanishing

C. Centrifugal repulsion

(16)
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boundary conditions. In particular, such conditions are satisAPPENDIX: BASIC MATHEMATICAL CONCEPTS

fied by (generalizetl ground states and this mathematical

feature is responsible for the appearance of impenetrable bar-\ve shall give a brief introduction to the basic mathemati-
riers. Letg e L2 (R), that is, we consider all functions that cal concepts employed in the paper, with an emphasis on the
are square integrable on all compact setRinlf there is a  distinctions between symmetric and self-adjoint operators in
closed setN of Lebesgue measure zero so thatrictly  Hilbert space.

speaking we admit distributiongl¢p/dx e L2 (R\N), then (1) Absolute continuityLet ¢(x) be locally integrable on
there is a uniquely determined Hamiltonibinsuch thatpis ~ R. Thenf(x)=[3¢(t)dt s called absolutely continuous and
its (generalizefiground state. If X—x,) ~*?¢ is bounded in  denoted byf e AC(R). If ¢ is continuous, therf is differ-

the neighborhood of,, then there is an impenetrable barrier entiable andd f(x)/dx = ¢(x). If d/dx is understood as an
atx,. For a precise description of this mechanisniRlh see  operator in Hilbert space and its domain contains absolutely

for example, Ref. 18. continuous functions, then we sgf(x)/dx = ¢(x), even if
. ] f happens not to be differentiable.
D. Multi-trapping enclosure (2) Domains of operatorsMost of the operators discussed

In contrast to the centrifugal repulsion where the singulari? tis paper are unbounded. When defining an unbounded
ity of the potential alone was capable of making the ground®P&rator, it always is necessary to specify its domain of defi-
state degenerate due to the impenetrable barrier at the origifition- If A is an operator in the Hilbert spade, we write
we also can impose the existence of barriers as an externRI(A) CH for the domain ofA. An operatorB is called an
boundary condition. We introduce the differential expressiorextension ofA, which is often written a®\CB, if and only
Ho=— d?/dx? and observe that for any req) the function if D(A)CD(B) andAf=Bf for all f e D(A).
y(x)=sin(@x) satisfies the equationHyy=q%y. The (3) Symmetric versus self-adjoint operatots operatoB
operator Hq:HO—q2 is self-adjoint when operating is adjoint toA if (&) (g,Af)=(Bg,f) for all feD(A) and
on D(Hy=[f e AC?(R);f,f’,f"e LA(R), f(nm/q)=0n geD(B), (b) B is a maximal operator with the properts),
=0,+=1,=2,...] and singX) is its generalized ground state. In in the sense that IBC C andB# C, then(a) does not hold
this case a particle localized at time O in a segmdmt  for C. We write B=A* if B is adjoint toA. It follows that
—1)w/g,n(w/q)] will be confined there forever. This ACC implies C*CA*. We say thatA is symmetric if
model can be considered as that of multi-trapping enclosure,C A* and self-adjoint ifA=A*.
with impenetrable barriers at point§7/q). Note that in (4) Closed operatar Let us consider a densely defined
every segmenf(n—1)w/q,n(w/q)], the corresponding operator A. For any ge D(A), we set|gl;=[(Ag,AQ)
dynamics is identical with the one associated previously with+ (g,g) ]2 Then||-||; is a norm inD(A). If f,e D(A) is a

the infinite well. Cauchy sequence iff-|;, that is, limy m_w|fm—"fall1=0,
then f,, also is a Cauchy sequence in the Hilbert spate
VI. CONCLUSION norm ||f||=[(f,f)]¥2 By the completeness df there isf

e H such that lim_..|f —f,|=0. If it follows that f neces-
infinite well) that serve as approximations of regular one sarily belongs toD(A) [that is, D(A) is complete in the

(such as the finite wellin the sense of suitable limits. If the ﬁ|||_1 norm], then we say thah is closed and we writé\
properties of the limiting model are to give a reliable, albeit=A. If A is not closed, it still may have a closed extension.
approximate, description of a non-singular one, the physicalhat can be guaranteed by assumimgA*) to be dense in
meaning of the observables should survive the limiting pro-H.

cedure. As we have demonstrated, such a viewpoint is con- Under such circumstances the|,-norm limit lim,,_ ., Af,,
sistent with localized dyna_mics in the presence of traps modexists for any Cauchy sequenége D(A) and moreoveg
eled by impenetrable barriers. =lim,_.. Af, is the same for all sequencésconverging to

There is one common feature shared by the models con: S L=
sidered in Secs. IlI-V: the Hamiltonian is a WeII-deﬁnedqhe same limitf. Thus we may defin&f =lim,_., Af,. The

self-adjoint operator in each case, respecting various confin@peratorA is a minimal closed extension &, A is called a
ment requirements by suitable boundary conditions. There iglosure ofA. We haveA* = (A)*, A* =A%,

however no consistent canonical quantization procedure that (5) Self-adjoint extensiorLet A be symmetricAC A* but
can be carried out exclusively in the trap interior, because in . . —
the case of Dirichlet boundary conditions there is no self!S not necessarily self-adjoint. The cIos_uﬂe of A obeys
adjoint momentum-like operator. If we do not ignore the ex-ACACA*. Even if A#A*, we may haveA=A* and then
terior of the trap the momentum observable paradoxes disapk is called essentially self-adjoint. However, typically we
pear and the canonical quantization procedure reduces to iFﬁay expect tha* +A and at this point we need to invoke
textbook meaning also in the presence of impenetrable bafne notion of the self-adjoint extension.

riers.

We have considered several singular modslsch as the

Suppose thaB is a symmetric extension oA, then
ACBCB*CA*. Can we extend A so that ACB
=B*CA*, that is, hasA a self-adjoint extension? If so, is

We would like to thank J. Piskorski and H. Falomir for this extension unique? The full answer to those questions is
comments. This research has been supported by the Poligiven by the Krein—von Neumannn theory of self-adjoint
Ministry of Scientific Research and Information Technology extensions of symmetric operat6tsvhich we shall invoke
under Grant No. PBZ-MIN-008/P03/2003. in the following.
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(6) Deficiency indices and self-adjoint extensiohet A that although bottP, and P? are unbounded, the operator
be a closed operator, that &= A. We denote byM ,NCH exp(—iPit) is bounded and defined on the whole of
the spaces of the solutions oA{+i)g=0 and bym andn L2([0,7]).

respective dimensions of these spaces. The nunthersre (8) Momentum representatioiVe introduce the notiof®
called deficiency indices fok. For simplicity, we assume  of the “momentum operator in the momentum representa-
andn to be finite. ThenA has self-adjoint extensions if and jgp- Tgf(p): pf(p)'D(I~3)={f c LZ(R)'f|pf(p)|2dp

only if n=m. Let the deficiency indices oA form a pair <x}. We also have |32f(p)=p2f(p);D(52)={f
(n,n). Then there is a one-to-one correspondence between , = 5 =5
the self-adjoint extensions @ and the family of all unitary € L (R)jf2|p f(p” dp<e}. The ope.rator exptiP)f(p)

nXn matrices. We consider some examples in the following.=e>(p(_Ip §f(p) is bounded and defined on the whole of

2
(@) ConsiderH=L?(a,b) and A=—i(d/dx) acting in , . e
D(A)=C§(a,b)CL2(a,b). We recall thatf e CZ(a,b) if If F stands for the Fourier transformation afd - for its

and only if f is infinitely differentiable and suppC(a,b).  inverse, thenP=7F"'PF and D(P)=F 'D(P). Analo-
Accordingly, A=—i (d/dx) with the domainD(A)={f gously we haveP?=F 'P?FD(P?=7 'D(P?, and
e AC(a,b);f(a)="f(b)=0}. Integration by parts shows that exp(—iP%)=F ! exp(—iP%)F.
A*=A*=—i (d/dx) with D(A*)=AC(a,b). ThusACA*, o N
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Coherer. The Coherer is a form of detector used in early continuous wave radio receivers. It is a glass tube filled with sharply cut silver andingel shav
Silver electrodes make contact with the shavings on both ends. One electrode is connected to the antenna and the other to the ground. A seoies combinati
of a battery and a relay coil is also attached to the two electrodes. When the oscillating signal from a spark transmitter is received, the shavoligg tend
to each other, reducing the resistance of the coherer. The clapper of an electric bell mechanism then strikes the coherer, shaking up the Simgshend rai
resistance of the coherer to the original value. On the top, stamped in tiny letters, is “L.E. Knott” of Boston. The instrument is in the Greelfestdida,Co
and dates from about 191(Photograph and notes by Thomas B. Greenslade, Jr., Kenyon Qollege
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